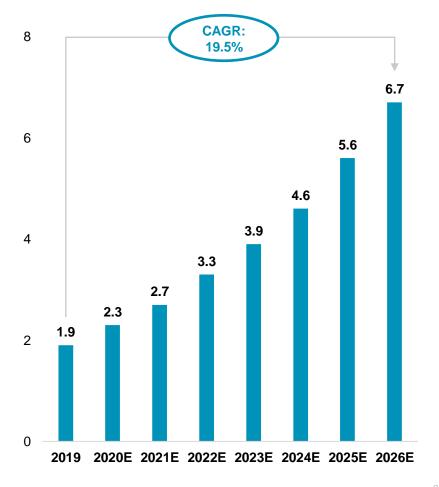


Section 1

INDUSTRY OVERVIEW

WAREHOUSE MANAGEMENT

Warehouse management consists of multiple processes that can potentially be automated, with the autonomous mobile robots market set to reach USD 6.7 billion by 2026


Warehouse Management

Process Flow

Autonomous Mobile Robots ("AMR")

Market Size, 2019-26E, USD Billion

PROCESS FLOW (1/6) - RECEIVING

There are five key steps in the receiving process: (1) inventory ordering; (2) appointment scheduling; (3) labour assignment; (4) stock unloading; and (5) goods inspection

Warehouse Management

Process Flow

	Description	Technology
INVENTORY ORDERING	 There are four main types of inventory: (1) raw materials / components, (2) work-in-progress ("WIP"); (3) finished goods; and (4) maintenance, repair, and operations ("MRO") 	An inventory management system ("IMS") uses automation through tracking technology like barcodes, radio- frequency identification ("RFID") tags, etc. to manage goods
APPOINTMENT SCHEDULING	 Appointment scheduling is a means for managing the timeliness of inbound and outbound transportation (i.e. truck traffic) at your loading docks 	Dock scheduling software can help automate a dock calendar, showing operating constraints, such as open / close time, commodities accepted through the dock door, etc.
LABOUR ASSIGNMENT	 For each stock of inventory arriving, a set of dock workers need to be assigned to be responsible for receiving the inventory 	 A labor management system can provide productivity reporting and planning capabilities, helping optimise the assignment of dock workers
STOCK UNLOADING	The warehouse dock workers are responsible for unloading the stock received, based on the appointment that they are assigned to	Depending on the size and volume of the cargo, unloading sometimes requires heavy lifting equipment such as forklifts and pallet jacks
GOODS INSPECTION	 Upon receiving the goods, a thorough inspection is required, including the quantity, the integrity of seals, the product codes/SKUs, and the overall condition 	An inventory scanner system, based on barcode or QR-code scanning can help track the inventory received and feed the resulting data into the inventory management system

PROCESS FLOW (2/6) - PUT-AWAY AND STORAGE

There are four key steps in the put-away and storage process: (1) location selection; (2) goods organisation; (3) goods placement; and (4) inventory filing

Warehouse Management

Process Flow

Description		Technology
LOCATION SELECTION	Forming the hear of the put-away process, It involves the movement of goods from the dock to the most optimal warehouse storage location	Using AMR for delivering the goods received to the most appropriate warehouse location is gaining popularity and can help optimise operations
GOODS ORGANISATION	The goods received need to be organised in the most optimal manner, based on their quantity, size, and the nature of items involved	A warehouse slotting system involves analysing inventory data to help categorise and organise the inventory, thereby helping maximise operational efficiency
GOODS PLACEMENT	Placement is the warehouse process in which the goods received are placed into their most appropriate storage space, helping maximise the space that is available	Automated storage and retrieval systems ("ASRS") can help automate the goods placement process, thereby reducing the need for human interaction
INVENTORY FILING	The warehouse staff is also required to take charge of completing all documentation as well as inputting the received inventory's information	An overall warehouse management system ("WMS") or an inventory management system may be used to keep track of the inventory

PROCESS FLOW (3/6) - PICKING

There are four key steps in the picking process: (1) methodology selection; (2) picker assignment; (3) methodology execution; and (4) transport station

Warehouse Management

Process Flow

Description		Technology	
METHODOLOGY SELECTION	The optimal picking methodology is selected: (1) picker-to-goods; (2) picker-to-order; (3) cluster; (4) wave; (5) zone; (6) pick-and-pass; or (7) batch	The aforementioned WMS can help guide on which picking methodology is most suitable, based on a variety of factors such as order volumes, inventory categories, etc.	
PICKER ASSIGNMENT	For each stock of inventory to be picked, a picker may need to be assigned to be responsible for picking the corresponding inventory required	A labor management system can provide productivity reporting and planning capabilities, helping optimise the assignment of pickers	
METHODOLOGY EXECUTION	Once a methodology has been selected and a corresponding picket has been assigned, the methodology then needs to be implemented	 Several automated warehouse picking systems have emerged, such as (1) pick-to-light; (2) voice picking; (3) mobile scanner; (4) AMR; (5) PA AMR; and (6) ASRS 	
STATION SELECTION	Once the inventory has been retrieved, it then needs to be transported to the most optimal packing station for conducting the next steps	A labor management system can provide productivity reporting and planning capabilities, helping optimise the selection of a packing station	

PROCESS FLOW (4/6) - PACKING

There are three key steps in the packing process: (1) container selection; (2) container packaging; and (3) container labelling

Warehouse Management

Process Flow

Description		Technology
CONTAINER SELECTION	Space and weight are key determinants for selecting a container that is small and light, but at the same time also sufficient to protect the finished item	Containerisation has emerged as a process that utilises standardised containers for the storage and transportation of items from a warehouse
CONTAINER PACKAGING	The items retrieved are then (1) packed; (2) wrapped; and (3) sealed with the container, ensuring that the goods are packaged safely and in good condition	Automated packaging systems can help reduce the need for human labour in packaging of containers, thereby saving labour costs as well as eliminating any potential human errors
CONTAINER LABELLING	Before a package is dispatched, it needs to be assigned a corresponding shipping label and invoice, in order to help facilitate its tracking at a later stage	Containers often have printed information, barcodes, and even RFID tags on them, in order to help track their location and status

PROCESS FLOW (5/6) - DISPATCHING

There are five key steps in the dispatching process: (1) carrier selection; (2) package sorting; (3) stock loading; (4) package delivery; and (5) delivery verification

Warehouse Management

Process Flow

	Description	Technology
APPOINTMENT SCHEDULING	Appointment scheduling is a means for managing the timeliness of inbound and outbound transportation (i.e. truck traffic) at your loading docks	Dock scheduling software can help automate a dock calendar, showing operating constraints, such as open / close time, commodities accepted through the dock door, etc.
PACKAGE SORTING	The packages that need to be delivered are sorted at the loading dock in the most appropriate manner in order to increase loading efficiency	 AMR can be utilised for automating the sorting process for packages that have been kept at the loading station, thereby helping avoid any cluttering
STOCK LOADING	 Upon the arrival of the carrier, the stock needs to then be loaded in the back of a truck and may involve the use of heavy lifting equipment 	 Automated guiding vehicles ("AGVs") are self-guided and can include forklifts and pallet carts, which follow digital paths throughout the facility to load stock
PACKAGE DELIVERY	 After the stock is loaded onto the truck, the packages are finally delivered by the carrier to the intended location and customer 	Warehouses may track the delivery of a package through
DELIVERY VERIFICATION	Warehouses may need to verify the coherence of a delivery, in order to ensure that the right package has been delivered to appropriate customer and location	order tracking technology, that allows them to check the real-time status of a package

PROCESS FLOW (6/6) - RETURNS

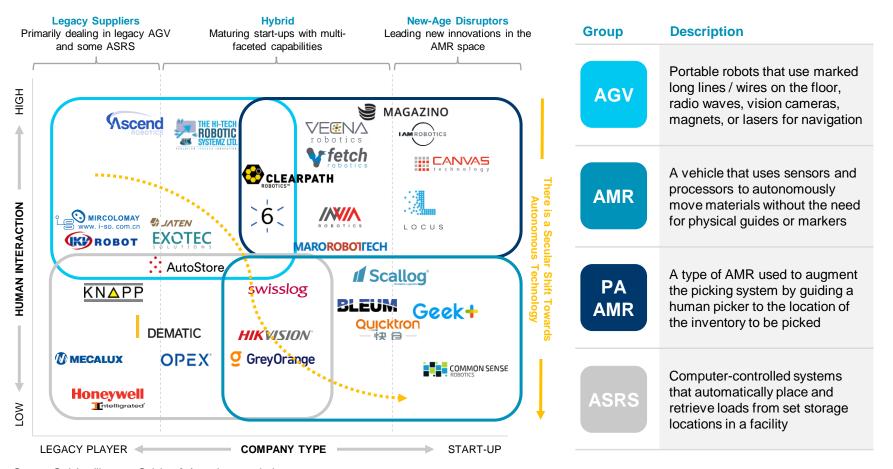
There are four key steps in the picking process: (1) return order creation; (2) goods inspection; (3) disposition deliberation; and (4) decision processing

Warehouse Management

Process Flow

Description		Technology
RETURN ORDER CREATION	Upon receiving a complaint or request from a customer for an item to be returned, a "Return Management Authorisation" should be crafted	
GOODS INSPECTION	Upon the receiving the returned goods, they need to then be inspected by the warehouse staff for any damage or other shortcomings, as reported by the customer	A returns management system may help create a more streamlined process for handling customer returns and
DISPOSITION DELIBERATION	 A decision needs to then be taken on what should be done with the goods, e.g. return to stock, repair, destroy, discard, recycle, return to manufacturer, etc. 	streamlined process for handling customer returns and complaints
DECISION PROCESSING	After a decision is taken, the inventory system should be updated based on whether the goods are returned to stock, or are held for further action	

COMPETITIVE LANDSCAPE

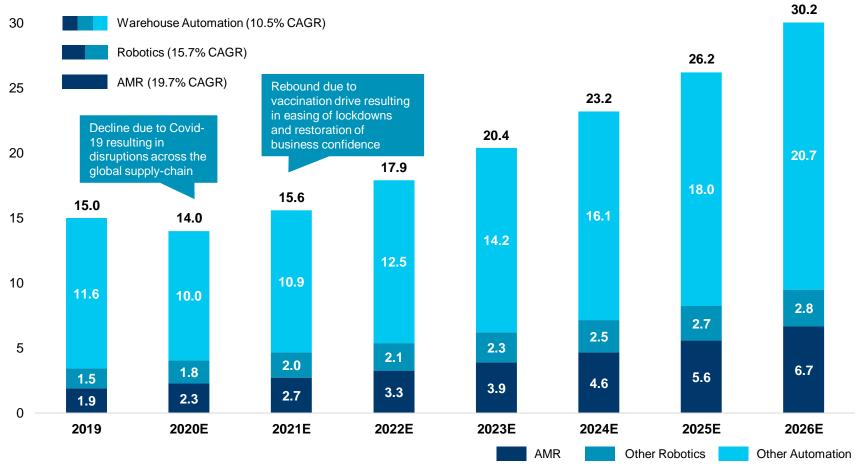

There are four primary player groups in the warehouse automation landscape: (1) AGV; (2) AMR; (3) PA AMR; and (4) ASRS

Competitive Landscape

Key Player Groups

Key Player Groups

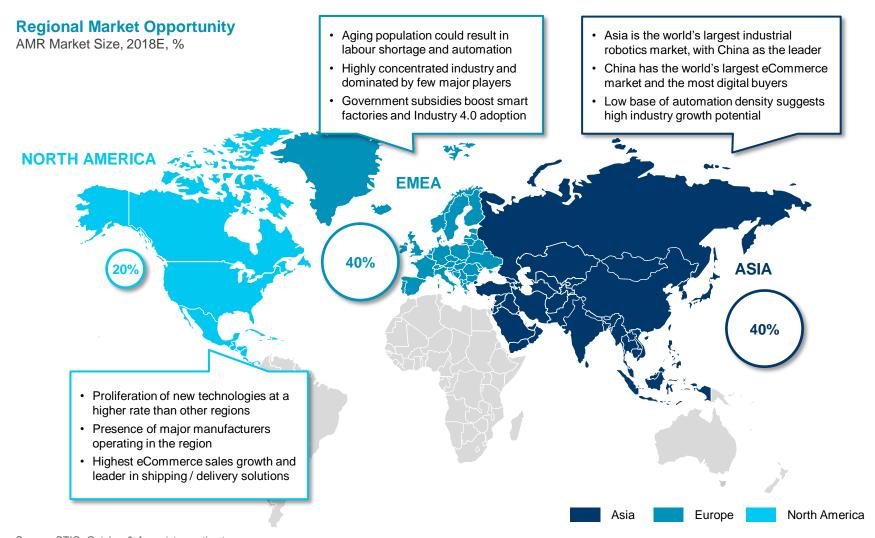
AGV, AMR, PA AMR, and ASRS



MARKET OPPORTUNITY (1/4) - GLOBAL

The global warehouse automation market is expected to reach USD 30.2 billion by 2026, growing at a CAGR of 10.5%, with the AMR market touching USD 6.7 billion

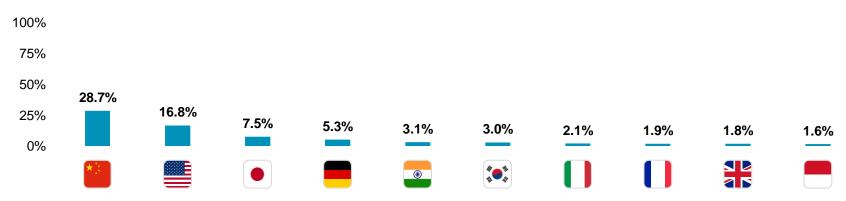
Global Market Opportunity


2019-26E, USD Billion

MARKET OPPORTUNITY (2/4) - REGIONAL

Asia has emerged as a key growth region for the AMR market, with China in particular showcasing robust potential

Source: STIQ, Quinlan & Associates estimates



MARKET OPPORTUNITY (3/4) – MANUFACTURING ACTIVITY

While China continues to be the global leader in manufacturing, several other countries in Asia have also seen rapid growth in their industrial output, opening new AMR opportunities

Manufacturing Output

Share of Global Manufacturing Output, 2019, %

Key Asian Manufacturing Hubs of the Future

Growth Drivers by Country

Country Growth Drivers

India

The "Make in India" policy and recent Production Linked Incentive (PLI) scheme have added to India's low labour costs and rich abundance of raw materials

Bangladesh

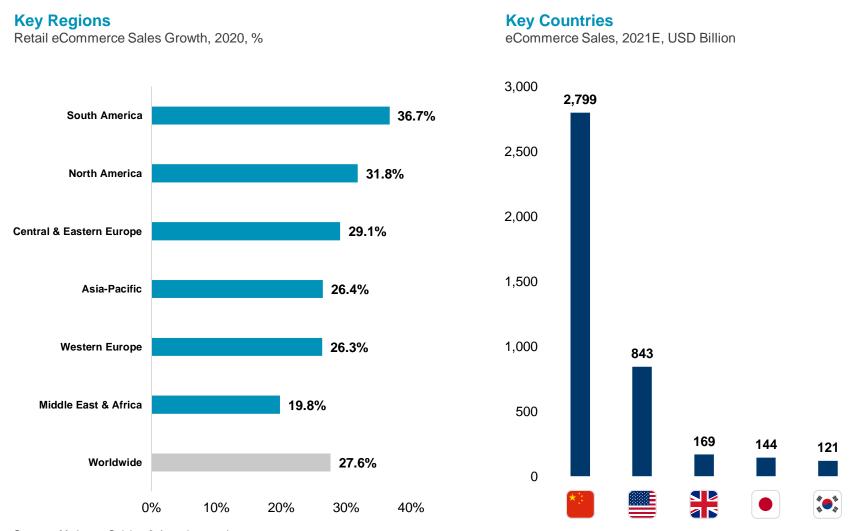
With wages increasing in other countries. Bangladesh is fast emerging as a low cost alternative in labourintensive industries like ready-made garments

Laos

Laos has begun to tap into its rich reserves of natural resources at a faster pace. with economic activity picking up rapidly, and a wave of foreign investment entering the country

Indonesia

The availability of vast swathes of workers in Indonesia has led to increase in exporting of unprocessed natural resources and simple manufactured goods


Vietnam

With geopolitical risks concerning manufacturers in China. Vietnam is fast emerging as an alternative due to its cheap cost, stable politics, and liberalised policies

MARKET OPPORTUNITY (4/4) - ECOMMERCE ACTIVITY

eCommerce remains a key driver of manufacturing activity, with the Americas exhibiting the strongest growth rates, though China still remains the leading market by far

Source: eMarketer, Quinlan & Associates estimates

TECHNOLOGY (1/2) – HARDWARE

There exist several key types of hardware that are being utilised by different players across the warehouse management lifecycle

Technology

Hardware

TECHNOLOGY (2/2) – SOFTWARE

Software-focused offerings are on the rise, but there remains a shortage of modular offerings for plug-and-play use

Technology

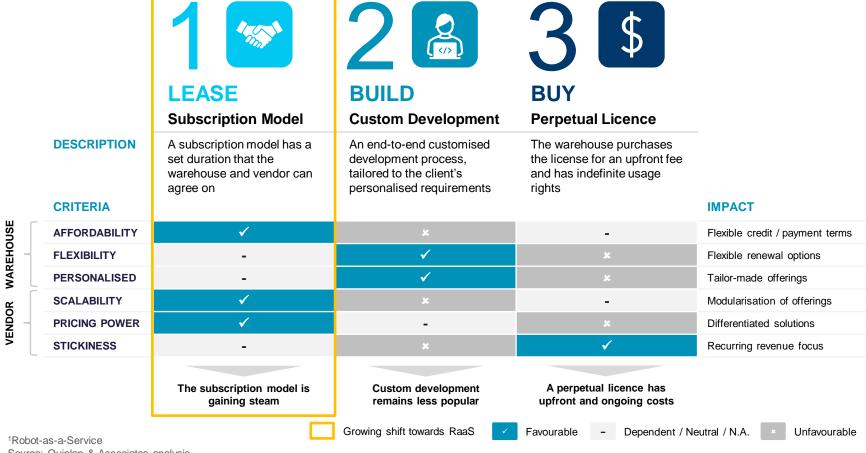
Software

BUSINESS MODEL (1/2) – HARDWARE

The popularity of RaaS¹ is on the rise, as smaller eCommerce traders emerge, custom development remains expensive, and demand fluctuation hampers direct purchase

Business Model

RaaS, Custom Development, and Direct Purchase



BUSINESS MODEL (2/2) – SOFTWARE

Owing to the relatively more flexible payment and renewal terms offered by subscription models, there is a shift away from perpetual licensing deals for software

Business Model

Subscription Model, Custom Development, and Perpetual Licence

Section 2

CHALLENGES & OPPORTUNITIES

INDUSTRY TRENDS (1/2) – TAILWINDS

Companies may look to pursue software modularisation in developed markets, while opting for wearable technology to boost labour productivity in less developed markets

Tailwinds

Supporting Factors

Tailwind	Description	Expected Impact	Recommendation
Warehouse Software	 Companies are looking to better integrate and more efficiently manage the various processes and operations that take place in a warehouse 		May look to enhance software offerings and pursue modularisation to provide more flexibility to warehouses
Robotic Automation	 In a bid to cut reliance on employees, warehouses are aggressively pursuing robotic automation as a means to slash costs 		 Apart from various forms of robotic automation already outlined earlier, aerial vehicles could emerge as the next big offering
Wearable Technology	Warehouses are turning towards wearable technology to support human warehouse workers in tasks		In regions with cheap labour, such as India, Cambodia, etc., companies can offer wearable technology to boost labour productivity
Big Data	Big data is helping warehouses understand layout utilisation and inventory placement, helping optimise how each square inch is used		Companies may double down on their software offerings, by adding functionalities such as inventory and layout optimisation
Cloud Computing	The growing use of technology in warehouses is being accompanied by a consequent adoption of cloud computing		Companies can explore partnerships with prominent cloud providers to further enrich their cloud-based offerings proposition
Internet of Things ("IoT")	The use of IoT is enabling warehouses to improve the traceability of their inventory, through interconnected sensors, RFID tags, etc.		The provision of IoT can help companies provide modular services such as inventory tracking, etc.

Low High

INDUSTRY TRENDS (2/2) – HEADWINDS

In order to capitalise on the headwinds facing the warehouse industry, companies needs to double down on their software and IoT offerings

Headwinds

Key Challenges

Tailwind	Description	Expected Impact	Recommendation
Inaccurate Inventory	 Inaccurate inventory may cause improper stock levels and a build-up of obsolete inventory, leading to picking problems 		 Companies may build-out their arsenal of software offerings that are focused on inventory optimisation, as a modular software offering
Suboptimal Picking	 Poor picking can potentially result in a disruption to the overall inventory control framework, leading to a domino effect 		Companies should provide AMR solutions in developed markets and IoT ones in emerging economies, based on labour costs
Poor Space Utilisation	Inadequate storage space as well as inefficient use of available spaces are common problems in warehouses with poor facility layout		Companies may double down on their software offerings, by adding functionalities like layout organisation, helping improve space utilisation
Demand Fluctuation	There may be high levels of fluctuation in demand, which can wreak havoc on warehouses if they have an inventory imbalance		By adding more inventory-focused software solutions, companies may help provide demand forecasting, integrated with its inventory robots
High Labour Costs	Warehousing is a labour-intensive industry, employing large swathes of people, with social distancing regulations now also in place		In more developed markets with high labour costs, companies can offer a robust suite of AMR offerings to help cut labour costs for clients
Quality Control	Ensuring the good quality of the inventory, right from receiving to dispatching is very important, to prevent a spike in customer returns		A holistic WMS offering can help track quality control throughout the end-to-end inventory management value chain

Low | | | | | | | | High

RECOMMENDATIONS

We see significant room for improvement for warehouse robotics companies in the following three types of areas: (1) strategic; (2) operational; and (3) financial

Recommendations

Strategic, Operational, and Financial

		CUSTOMERS	Customer segmentation, with identification of key target customers
STRATEGIC	4	CHANNELS	Sales cycle streamlining, with a view to shorten / scale the overall sales process
	<u>&</u> &	OFFERINGS	Identification of demand drivers vis-à-vis specific products and service offerings
		GEOGRAPHIC	Identifying new markets with high growth potential and calibrating market entry strategies
	41971	PARTNERSHIPS	Shortlisting of potential partners with robust synergies and differentiated value addition
		SCALABILITY	Gauging internal capabilities to scale offerings and client base
OPERATIONAL		HUMAN RESOURCES	Talent management strategy, based on labour requirements and talent sophistication
	A	RISK MANAGEMENT	Review of any operational risks that the company may have to potentially contend with
OPE	ΔŢ	REGULATORY COMPLIANCE	Ensuring compliance with the latest regulations governing warehouse safety standards
	9	CORPORATE GOVERNANCE	Management alignment and organisational oversight to streamline operations
FINANCIAL		REVENUE DRIVERS	Identification of key revenue drivers, in terms of customers, offerings, and pricing power
		COST DRIVERS	• Identification of key cost drivers, e.g. staff costs, research and development ("R&D"), etc.
		PROFITABILITY	Balance sheet optimisation and identification of key profitability drivers

CONTACT US

WEBSITE www.quinlanandassociates.com

EMAIL <u>enquiries@quinlanandassociates.com</u>

TEL (+852) 2618 5000

ADDRESS Level 19

Two International Finance Centre

8 Finance Street Central, Hong Kong

STRATEGY WITH A DIFFERENCE